
PHYS483: Quantum information processing—Lecture Notes

Henning Schomerus, Lancaster University

Contents

I. Quantum mechanics 1
A. States 1
B. Operators 2
C. Dynamics 2
D. Measurements 2
E. Density matrix 3
F. Two-state systems 3
G. Composite systems and entanglement 4
H. Bell inequalities 5

II. Classical computation 6
A. von Neumann architecture 6
B. Binary representation of information 6
C. Quantifying classical information 6
D. Operations 7
E. Unary and binary gates 7
F. Reversible gates 7
G. Complexity of computational tasks 8
H. Practical issues 8

III. Quantum information representation and
manipulation 8
A. Quantum bits 8
B. Quantum information 9
C. Quantum gates as unitary operations 10
D. Single-qubit gates 10
E. Two-qubit gates 11
F. Composition of gates 11
G. Function gates 12

IV. Quantum Communication 13
A. Superdense coding 13
B. Quantum teleportation 14
C. Secure communication 14

V. Quantum Computation 15
A. Adding numbers 15
B. Deutsch-Josza algorithm 15
C. Grover’s quantum search algorithm 16
D. Quantum Fourier transformation 18
E. Applications: From phase estimation to prime

factorization 18

VI. Error correction and practical issues 20
A. Errors and error correction 20
B. Practical requirements 21

VII. Further reading 23

I. QUANTUM MECHANICS

A. States

The state of a quantum system is described by a
vector |ψ〉. These vectors form a complex linear vec-
tor space, which entails, in particular, the follow-
ing properties: Any state |ψ〉 can be scaled by any
complex number α, i.e., we can form new states

|αψ〉 = α|ψ〉. Furthermore, any two states |ψ〉, |χ〉
can be combined into new states by a forming a
superposition |ψ + χ〉 = |ψ〉+ |χ〉.

The vector space is a Hilbert space, i.e., it is
equipped with a scalar product that associates a
complex number 〈ψ|χ〉 to any pair of states |ψ〉, |χ〉.
The scalar product is positive definite, 〈ψ|ψ〉 > 0 for
|ψ〉 6= 0|ψ〉, and fulfills 〈ψ|χ〉 = 〈χ|ψ〉∗. Furthermore,
it is linear in the second argument, but conjugate
linear in the first argument, i.e., 〈ψ|αχ〉 = α〈ψ|χ〉,
〈αψ|χ〉 = α∗〈ψ|χ〉, 〈ψ+ϕ|χ〉 = 〈ψ|χ〉+〈ϕ|χ〉, 〈ψ|ϕ+χ〉 =
〈ψ|ϕ〉+ 〈ψ|χ〉.

Formally, the scalar product can be interpreted
as a product 〈ψ| · |χ〉 between the vectors |χ〉 and
the entities 〈ψ|, which form the dual vector space.
They represent the left states in the scalar product
and therefore are also conjugate linear: 〈αψ+βχ| =
α∗〈ψ| + β∗〈χ|. The particular notation introduced
here is the so-called Dirac notation. In this no-
tation, a dual vector is also called a bra, and an
ordinary vector is called a ket, alluding to the fact
that in the scalar product 〈ψ|χ〉 they form a bracket
(bra-ket).

We call ||ψ|| =
√
〈ψ|ψ〉 the length of the vector

|ψ〉. A vector with 〈ψ|ψ〉 = 1 is called normalized.
The procedure of passing from a vector |ψ〉 to the
normalized vector |ψ〉/||ψ|| is called normalization.
Two states |ψ〉, |χ〉 fulfilling 〈ψ|χ〉 = 0 are said to be
orthogonal to each other.

A basis is a collection of vectors |n〉, n =
1, 2, 3, . . . ,N such that any vector can be written as
a superposition |ψ〉 =

∑N
n=1 ψn|n〉, where the com-

plex coefficients ψn are unique. The coefficients ψn
give a representation of the state, and can be writ-
ten as a column vector

ψ =

ψ1

ψ2

...
ψN

 .

The corresponding dual vector is written as a row
vector ψ† = (ψ∗1 , ψ

∗
2 , . . . , ψ

∗
N). While there are many

possible bases, in which the same vector is rep-
resented by different coefficients, the number N of
basis states required to obtain all vectors is always
the same, and is called the dimension of the vector
space (N may be ∞).

An orthogonal basis fulfills 〈n|m〉 = 0 for any
n 6= m. If furthermore 〈n|n〉 = 1 for all n one
speaks of an orthonormal basis. In such a basis,
the coefficients representing a state are given by

2

ψn = 〈n|ψ〉, and the scalar product takes the form
〈ψ|χ〉 =

∑
n ψ
∗
nχn = ψ†χ.

B. Operators

An operator Â converts any state |ψ〉 into an-
other state |Âψ〉 = Â|ψ〉. Linear operators fulfill
Â(α|ψ〉 + β|χ〉) = αÂ|ψ〉 + βÂ|χ〉. Operators can be
added according to the rule (Â+B̂)|ψ〉 = Â|ψ〉+B̂|ψ〉,
and multiplied according to the rule (B̂Â)|ψ〉 =

B̂(Â|ψ〉).
In an orthonormal basis, linear operators are

represented by N × N-dimensional square matri-
ces

A =

A11 A12 . . . A1N

A21 A22 . . . A2N

...
...

. . .
...

AN1 AN2 . . . ANN

with coefficients Anm = 〈n|Âm〉 ≡ 〈n|Â|m〉. They
then act on vectors by matrix multiplication, i.e.,
|ϕ〉 = Â|ψ〉 is represented by coefficients ϕn =∑
mAnmψm. In a given representation, the operator

addition and multiplication rules translate to the
usual prescriptions of matrix addition and multi-
plication.

In Dirac notation, operators are written as Â =∑
nmAnm|n〉〈m|, and the action of an operator is

obtained from the multiplication rule 〈m| · |ψ〉 =
〈m|ψ〉.

The action of an operator is particularly simple
in its eigenrepresentation, defined by a basis ful-
filling Â|n〉 = an|n〉. The numbers an are called
eigenvalues, and the vectors |n〉 are called eigen-
vectors. If the eigenvectors form an orthonormal
basis, the matrix Anm is diagonal, Anm = 0 if n 6= m
and Ann = an. In Dirac notation, the operator can
then be written as Â =

∑
n an|n〉〈n|.

A particularly simple operator is the identity
operator Î, which leaves all states unchanged,
Î|ψ〉 = |ψ〉. Every state is therefore an eigenstate
of Î, with eigenvalue 1. Consequently, in any or-
thonormal basis this operator takes the same form
Î =

∑
n |n〉〈n|. Representations are simply obtained

by multiplying out the identities |ψ〉 = Î|ψ〉 and
Â = ÎÂÎ. For a fixed orthonormal basis, it is
useful to decompose the identity Î =

∑
Ên as the

sum of projection operators Ên = |n〉〈n|, which fulfill
ÊnÊm=0 if n 6= m, and Ê2

n = Ên.
For all operators we can define an adjoint op-

erator Â† by 〈ψ|Â†χ〉 = 〈Âψ|χ〉. For many opera-
tors, we can also define an inverse operator Â−1 by
ÂÂ−1 = Î

Two important types of operators are hermitian
operators Ĥ and unitary operators Û . For any two
states |ψ〉, |χ〉, hermitian operator fulfill 〈ψ|Ĥχ〉 =

〈Ĥψ|χ〉, while unitary operators fulfill 〈Ûψ|Ûχ〉 =

〈ψ|χ〉. This entails Ĥ = Ĥ† and Û† = Û−1. Both
classes of operators have the nice property that
their sets of normalized eigenvectors form an or-
thonormal basis. For hermitian operators, the
eigenvalues an are real, while for unitary operators
they fulfill |an| = 1.

C. Dynamics

The time evolution of quantum states is gov-
erned by the Schrödinger equation

i~
d

dt
|ψ(t)〉 = Ĥ(t)|ψ(t)〉,

where Ĥ is a hermitian operator called Hamilto-
nian. Given an initial state |ψ(t0)〉, the general
solution can be written as |ψ(t)〉 = Û(t, t0)|ψ(t0)〉,
where Û(t, t0) is a unitary operator called the
time evolution operator. This operator fulfills the
Schrödinger equation i~ d

dt Û(t, t0) = Ĥ(t)Û(t, t0)

with initial condition Û(t0, t0) = Î.
In the particular case Ĥ = const(t) of a time-

independent Hamiltonian, the time evolution op-
erator takes the form

Û(t, t0) = exp[−i(t− t0)Ĥ/~],

where the exponential function of an operator is
defined as exp Â =

∑∞
k=0 Â

k/k! . Using the eigen-
representation Ĥ =

∑
nEn|n〉〈n| of the Hamiltonian

we can write Û(t, t0) =
∑
n exp[−i(t− t0)En/~]|n〉〈n|.

D. Measurements

Measurements deliver information about observ-
able properties (observables) of quantum systems.
Quantum mechanics associates to each observable
A a hermitian operator Â. The eigenvalues an of Â
are the (only) possible outcomes of the experiment.
Each outcome occurs with a probability given by

P (A = an) = |〈n|ψ〉|2 = 〈ψ|n〉〈n|ψ〉 = 〈ψ|Ên|ψ〉,

where |n〉 is the eigenvector associated with an,
and Ên = |n〉〈n| is the associated projection opera-
tor. The average 〈A〉ψ =

∑
n Pnan of the outcome of

many identical experiments, known as the expec-
tation value of A, can be calculated directly from
the quantum state using 〈A〉ψ = 〈ψ|Â|ψ〉.

In the simplest case, a measurement with out-
come an transforms the state of the system into the

3

eigenstate |n〉. In general, however, the values of
one observable alone do not suffice to uniquely de-
termine the state of a system. Instead, a complete
description requires to measure a larger set Â(l)

of simultaneous observables. Such observables
commute with each other, [Â(l), Â(m)] = 0, where
[Â, B̂] = ÂB̂ − B̂Â is the commutator. This property
guarantees that one can find a joint eigenbasis,
given by states |ψa〉 = |a(1), a(2), a(3), . . .〉 fulfilling
Â(l)|ψa〉 = a(l)|ψa〉. These states are only fully spec-
ified by knowledge of the eigenvalues a(l) of the full
set of simultaneous observables, which we here
grouped into a vector a with components al = a(l).

In this situation, a specific measurement out-
come a

(l)
n for a single observable Â(l) delivers only

incomplete information about the quantum sys-
tem. In order to describe the effect of such a
measurement, let us introduce the projection op-
erator Ê

(l)
n =

∑
al=a

(l)
n
|ψa〉〈ψa| onto all states that

share the given eigenvalue a
(l)
n . A measurement

with outcome a
(l)
n then occurs with probability

Pn = 〈ψ|Ên|ψ〉, and transforms the quantum state
into the (not yet normalized) state |χn〉 = Ên|ψ〉.
The normalized post-measurement state is given
by |ψn〉 =

√
1/Pn|χn〉. Since the other observables

remain undetermined, such an incomplete mea-
surement does not force the system into a unique
final state.

E. Density matrix

An ensemble is a large collection of physically
identical quantum systems, which however can be
described by different states. When all the states
are identical the ensemble is said to be pure, other-
wise it is mixed. In general, we specify that a frac-
tion Pi of states is in state |ψi〉, where

∑
i Pi = 1 and

〈ψi|ψi〉 = 1. Starting from a pure ensemble with all
members in state |ψ〉, such a mixed ensemble is
obtained, e.g., by measurement of an observable,
with Pi and |ψi〉 obtained as described in the pre-
vious section. In the ensemble, expectation values
are defined by 〈A〉 =

∑
i Pi〈ψi|Â|ψi〉.

By construction, a mixed ensemble cannot be
described by a single quantum state. However, it
is possible to define a statistical operator ρ̂, most
commonly known as the density matrix, which al-
lows to calculate all expectation values in a given
mixed ensemble. This operator is given by

ρ̂ =
∑
i

Pi|ψi〉〈ψi|,

and the expectation values are obtained by

〈A〉ρ = tr (Âρ̂).

Here, tr B̂ denotes the trace of an operator, which
in any given orthonormal basis can be calculated
as tr B̂ =

∑
n〈n|B̂n〉 =

∑
nBnn.

Normalization of states carries over to the prop-
erty tr ρ̂ = 1. Moreover, the density matrix is her-
mitian and positive definite. This entails that in its
eigenrepresentation ρ̂ =

∑
n pn|n〉〈n|, all eigenval-

ues are nonnegative, pn > 0; they also sum up to
unity,

∑
n pn = 1. (The nonvanishing eigenvalues

pn are only identical to the values Pi if the states
|ψi〉 used to define the ensemble are orthogonal to
each other.)

For a pure ensemble, pn = 1 for one state, while
all the other pm = 0 (m 6= n). In this case, ρ̂ =
|n〉〈n| = Ên is a projection operator, and therefore
fulfills ρ̂2 = ρ̂. It follows that for a pure state tr ρ̂2 =
1. For a mixed state, however tr ρ̂2 =

∑
n p

2
n < 1.

The quantity P = tr ρ̂2, also known as the pu-
rity, therefore easily distinguishes pure from mixed
states. The maximally mixed state is described by
the density matrix ρ̂ = 1

N Î (where N is the Hilbert
space dimension), and has purity P = 1/N .

In a given representation, the density matrix of a
pure state |ψ〉 can be obtained from ρ = ψψ†, which
is useful for specific calculations.

The time evolution of the density matrix follows
from the Schrödinger equation, and is given by
d
dt ρ̂ = i

~ [ρ̂, Ĥ]. The general solution can be written
as ρ̂(t) = Û(t, t0)ρ̂(t0)Û†(t, t0), where Û is the unitary
time evolution operator defined in section I.C.

F. Two-state systems

Given an orthonormal basis |0〉, |1〉 of a two-state
system, each state |ψ〉 = α|0〉 + β|1〉 is represented

by a two-component vector
(
α
β

)
. Each hermitian

operator Ĥ = a0Î + axX̂ + ayŶ + azẐ can be formed
from four elementary operators with matrix repre-
sentation

I =

(
1 0
0 1

)
, X =

(
0 1
1 0

)
, Y =

(
0 −i
i 0

)
, Z =

(
1 0
0 −1

)
.

The matrices X, Y and Z are the Pauli matrices,
most familiar from the description of the spin of
an electron where they are often denoted as σx, σy
and σz, respectively. They fulfill X2 = Y 2 = Z2 = I,
XY = −Y X = iZ, Y Z = −ZY = iX, ZX = −XZ =
iY .

It is useful to characterize the state of a two-state
system by the vector of expectation values

~P = (〈X〉, 〈Y 〉, 〈Z〉),

which is known as the polarization vector. For a
normalized pure state |ψ〉 = α|0〉+ β|1〉,

~P = (2 Reα∗β, 2 Imα∗β, |α|2 − |β|2)

4

is of unit length, and therefore lies on a sphere
called the Bloch sphere. In terms of spherical polar
coordinates on this sphere,

|ψ〉 = cos(θ/2)|0〉+ eiφ sin(θ/2)|1〉.

The azimuthal angle φ = argα∗β of this vector is
also known as the phase of the state. For a mixed
state, |~P | < 1 so that the vector lies within the
sphere. In terms of these expectation values, the
density matrix can be written as

ρ =
1

2

(
1 + Pz Px − iPy
Px + iPy 1− Pz

)
=

1

2
(I+PxX+PyY+PzZ).

The purity of this density matrix is given by P =
1
2 (1 + |~P |2).

G. Composite systems and entanglement

An important example where simultaneous ob-
servables occur are composite systems (say, a sys-
tem composed of parts 1 and 2), where incom-
plete information can be acquired by measuring
an observable of a subsystem (say, part 1). Start-
ing from an orthonormal basis |n〉 (n = 1, . . . ,N1)
for system 1 and |m〉 (m = 1, . . . ,N2) for system 2,
the joint state |ψ〉 =

∑
nm ψnm|nm〉 of the compos-

ite system can be written by using combined ba-
sis states |nm〉, sometimes also written as |n〉|m〉
or |n〉 ⊗ |m〉. The corresponding dual basis vec-
tors are denoted by 〈nm|. The Hilbert space di-
mension of the composite system is therefore given
by N = N1N2. General operators can be written as
Â =

∑
nmklAnk,ml|nk〉〈ml|. Operators acting on sub-

system 1 will be denoted by Â1, and have represen-
tation Â1 =

∑
nmk A

(1)
nm|nk〉〈mk|. Operators acting

on subsystem 2 will be denoted by Â2, and have
representation Â2 =

∑
nklA

(2)
kl |nk〉〈nl|. This results

in the convenient block matrix form

A1 =

 A
(1)
11 I A

(1)
12 I · · ·

A
(1)
21 I A

(1)
22 I · · ·

...
...

. . .

 , A2 =

 A(2) 0 · · ·
0 A(2) · · ·
...

...
. . .

 ,

where I is the N2 × N2-dimensional identity ma-
trix. Here, the basis states are ordered as
|1, 1〉, |1, 2〉, . . . , |1,N2〉, |2, 1〉, |2, 2〉,

Sometimes, the state of a composite system can
still be written as the product |ϕ〉|χ〉 of two states,
where |ϕ〉 describes system 1 and |χ〉 describes sys-
tem 2. Such states are called separable. This
requires that the coefficients can be written as
ψnm = ϕnχm. States that are not separable are
called entangled.

In order to determine whether states are separa-
ble or entangled, it is useful to consider measure-
ments of observables of one subsystem, say system

1. When a state is separable, |ψ〉 = |ϕ〉|χ〉, the out-
come of such measurements only depends on |ϕ〉.
However, when the system is entangled, measure-
ments on one subsystem cannot be described by
a single state of that system. It is then still pos-
sible to describe these measurements by a density
matrix

ρ̂1 =
∑
nmk

〈nk|ψ〉〈ψ|mk〉|n〉〈m|,

known as the reduced density matrix. This means
that all expectation values can be computed ac-
cording to 〈A〉 = tr Âρ̂1. Analogously, measure-
ments of the second subsystem are described by a
reduced density matrix ρ̂2 =

∑
nkl〈nk|ψ〉〈ψ|nl〉|k〉〈l|.

If a state |ψ〉 is separable, the reduced density ma-
trices are pure, i.e., tr ρ̂21 = tr ρ̂22 = 1. If the state
|ψ〉 is entangled, the reduced density matrices are
both mixed, i.e., tr ρ̂21 = tr ρ̂22 < 1.

Reduced density matrices can also be defined
when the composite system is already in a mixed
state, described by a density matrix ρ̂. They are
then given by

ρ̂1 =
∑
nmk

〈nk|ρ̂|mk〉|n〉〈m|, ρ2 =
∑
nkl

〈nk|ρ̂|nl〉|k〉〈l|.

These constructions are also called partial trace,
and then written as ρ̂1 = tr2 ρ̂, ρ̂2 = tr1 ρ̂. This
designation becomes clear when one considers the
block form

ρ =

 ρ
(2)
11 ρ

(2)
12 · · ·

ρ
(2)
21 ρ

(2)
22 · · ·

...
...

. . .

of the density matrix in the composite basis, where
ρ
(2)
nm are N2 ×N2-dimensional matrices. Then,

ρ1 =

 tr ρ
(2)
11 tr ρ

(2)
12 · · ·

tr ρ
(2)
21 tr ρ

(2)
22 · · ·

...
...

. . .

 , ρ2 =
∑
n

ρ(2)nn .

In this more general case of a composite system
with a mixed density matrix, the purities of both
reduced density matrices do not need to be identi-
cal, and cannot simply be used to decide whether
the system is entangled or not; this is discussed in
more detail below.

As an (important) example, consider the compo-
sition of two two-state systems. Pure states can be
written as |ψ〉 = α|00〉+ β|01〉+ γ|10〉+ δ|11〉, and are
normalized if |α|2 + |β|2 + |γ|2 + |δ|2 = 1. The entan-
glement of such a state is often characterized by
the concurrence

C = 2|αδ − βγ|,

5

which fulfills 0 ≤ C ≤ 1. For separable states,
C = 0, i.e., the concurrences vanishes. For en-
tangled states, C > 0. States with C = 1 are called
maximally entangled. Examples of maximally en-
tangled states are the four Bell states

|β00〉 =

√
1

2
(|00〉+ |11〉),

|β01〉 =

√
1

2
(|01〉+ |10〉),

|β10〉 =

√
1

2
(|00〉 − |11〉),

|β11〉 =

√
1

2
(|01〉 − |10〉).

For the pure state given above, the full density
matrix

ρ =

 α
β
γ
δ

 (α∗, β∗, γ∗, δ∗) =

(
A B
C D

)

can be conveniently written in block form, where
A, B, C, and D are 2×2-dimensional matrices. The
reduced density matrix

ρ1 =

(
trA trB
trC trD

)
can then be obtained by taking traces of the
blocks, which here results in

ρ1 =

(
|α|2 + |β|2 αγ∗ + βδ∗

γα∗ + δβ∗ |γ|2 + |δ|2
)
.

Similarly,

ρ2 = A+D =

(
|α|2 + |γ|2 αβ∗ + γδ∗

βα∗ + δγ∗ |β|2 + |δ|2
)
.

The purity of these reduced density matrices is re-
lated to the concurrence,

tr ρ̂21 = tr ρ̂22 = 1− C2/2.

Furthermore, we have the identity det ρ̂1 = C2/4.
For composite systems in a pure state, the

reduced density matrix also delivers the en-
tanglement of formation E = −tr (ρ̂1 log2 ρ̂1) =
−tr (ρ̂2 log2 ρ̂2), which is identical to the von Neu-
mann entropy of the mixed states of the subsys-
tems (see section III.B).

In their form discussed above, these measures of
entanglement only apply to pure states of a com-
posite system. Entanglement measures for multi-
component systems with a mixed density matrix
are an active field of research. Well understood

is only the case of two composite two-level sys-
tems, for which entanglement measures can be
computed efficiently from the 4 × 4 dimensional
density matrix ρ of the composite system in the
standard basis. In order to obtain the concur-
rence, one needs to compute the four eigenvalues
λi of the matrix ρ(Y1Y2)ρ∗(Y1Y2), where Y1 and Y2
are the Y Pauli matrix acting on subsystem 1 and
2, respectively. When the eigenvalues are ordered
such that λ1 > λ2 > λ3 > λ4, the concurrence is
given as C = max (0,

√
λ1 −

√
λ2 −

√
λ3 −

√
λ4). The

entanglement of formation E = mindec

∑
i PiE(ψi) is

generalized by minimizing the averaged pure-state
entanglement of formation over all possible decom-
positions ρ̂ =

∑
i Pi|ψi〉〈ψi| of the density matrix

(where the states |ψi〉 do not need to be orthogonal).
Remarkably, both entanglement measures are re-
lated by the general formula E = h(1

2 + 1
2

√
1− C2),

where h(x) = −x log2 x− (1− x) log2(1− x).

H. Bell inequalities

Entanglement is physically significant because
it results in correlations that cannot be described
by classical probabilities. These correlations can
be uncovered by statistical tests, known as Bell in-
equalities. The most transparent inequality is the
CHSH inequality due to Clauser, Horn, Shimony,
and Holt. Consider the composition of two two-
state systems; to be explicit, think of the spins
of two electrons with basis states |0〉 = | ↑〉 and
|1〉 = |↓〉. On each spin we carry out two different
experiments, described by observables Â1, Â′1, B̂2,
and B̂′2, which measure whether the spin points
into a particular direction. To the outcome of each
experiment we designate the value 1 or −1, depend-
ing on whether the spin is found to be aligned par-
allel or antiparallel to the measurement direction,
respectively. Now consider the expectation value
of

F̂ = (Â1 + Â′1)B̂2 − (Â1 − Â′1)B̂′2.

Classically, for each combination of outcomes,
F is either 2 or −2, and therefore on average
〈F 〉 ≤ 2, which is the CHSH inequality. Quantum-
mechanically, the average is obtained by an ex-
pectation value. Let us choose Â1 = Z, Â′1 = X,
B̂2 = −

√
1/2(X+Z), and B̂′2 =

√
1/2(Z−X), so that

F̂ = −
√

2(X1X2+Z1Z2), which is represented by the
matrix

F = −
√

2

 1 0 0 1
0 −1 1 0
0 1 −1 0
1 0 0 1

 .

Furthermore, assume that the system is in the Bell
state |β11〉 =

√
1/2(|↑↓〉 − |↓↑〉), represented by the

6

vector

ψ =
√

1/2

 0
1
−1
0

 .

We then find 〈F̂ 〉 = ψ†Fψ = 2
√

2, which violates
the CHSH inequality. The reason are quantum-
mechanical correlations that arise as a conse-
quence of the entanglement of the Bell state.
Quantum computation taps into this resource to
achieve tasks that are classically impossible.

II. CLASSICAL COMPUTATION

A. von Neumann architecture

Computers store and process information. All
common computers feature a combination of in-
put and output devices, memory, processing unit,
and control unit, which is known as the von Neu-
mann architecture. This architecture is designed
to store and process information flexibly by means
of programs, which encode a sequence of instruc-
tions. These features also apply to the proposed
quantum computers. The difference between both
types of devices consists in how they represent and
manipulate the information. In this section, we de-
scribe how this works for classical computers.

B. Binary representation of information

Classical computers represent information digi-
tally as binary numbers x =

∑N−1
n=0 xn2n, where the

binary digits (or bits) xn can take values 0 or 1,
and can be presented as a sequence xN−1 . . . x2x1x0
(sometimes, leading zeros are dropped). For exam-
ple, the binary number 11 is identical to the dec-
imal number 3, and the binary number 100010 is
identical to the decimal number 34. These num-
bers can be interpreted in many different ways —
they may represent a letter (as in the ASCII code),
or the color or brightness of a pixel on a computer
monitor. They therefore represent various types of
information.

C. Quantifying classical information

From a physical perspective, the transmission of
large amounts of binary data results in an irreg-
ular sequence of discrete events which is best de-
scribed in the language of statistical mechanics.
This provides means to precisely quantify the in-
formation content of the data, as well as its degra-
dation due to imperfections in transmission and
manipulation processes.

Consider a register with N binary digits (bits).
This can represent N = 2N different numbers.
When we add a register with M bits, this increases
to NM = 2N+M (where M = 2M). However, since
physically we simply added components, the data
capacity of the composed register is far more con-
veniently specified by describing it as an (N +M)-
bit register. The desired additive measure of stor-
age capacity is therefore N = log2N , M = log2N ,
where log2 is the logarithm with base 2 (such that
log2 2 = 1). This is nothing else but the entropy

S = −
N∑
n=1

pn log2 pn

of a system with N microstates, which are all occu-
pied with equal probability pn = N−1. The entropy
S defined here is known as the Shannon entropy,
and differs from the entropy in thermodynamics
only by a multiplicative factor kB ln 2 (where kB is
Boltzmann’s constant).

The entropy is a convenient measure of informa-
tion content particularly when one considers that
we usually do not make best use of the register
states. E.g., the ASCII code only has 7 bits (the
8th bit in a byte can therefore be used to check
for errors, i.e., it adds redundancy). More.ove.r, in
te.xts we. only use. printable. characte.rs, and some.
characte.rs (such as e.) occur far more. fre.que.ntly
than othe.rs (such as q). The different register
states then no longer occur with equal probability
pn, which is exploited by compression algorithms
(frequent symbols—or combinations of symbols—
are abbreviated by short bit sequences). The en-
tropy tells us to how many bits a data stream can
be ideal compressed—this is Shannon’s noiseless
channel coding theorem.

The entropy can also be used to quantify the
degradation of the information content due to
transmission errors. Assuming that bits are
flipped randomly with error rate p, the capacity of
a channel reduces by a factor C = 1 + p log2 p+ (1−
p) log2(1− p). Another source of errors are lost data
packages—this is especially prevalent in wireless
transmission and satellite communication.

Errors can be detected and corrected by adding
additional bits—naively, by repeatedly sending the
same data stream; more effectively, by adding
other means of redundancy, such as using the
8th bit in the ASCII code for a parity check. For-
tunately, Shannon’s noisy channel coding theorem
ensures the existence of error-correction codes
which make the error probability arbitrarily small
(see section VI.A for examples of error-correction
schemes).

7

FIG. 1 Circuit representation of elementary classical
gates.

D. Operations

Consider a memory unit which contains N bits.
Such a unit is also called a register. The specified
register can represent N = 2N binary numbers,
which range from 0 to 2N − 1. In order to carry
out computations, we need facilities to transform
any of these numbers into any other number in the
same range. It turns our that this is possible with
a sequence of operations which act either only on
one bit (called unary operations), or on a pair of
bits (called binary operations). Furthermore, be-
cause bits only take two possible values, these op-
erations can be formulated using the concepts of
Boolean logic, the mathematical discipline of TRUE
and FALSE statements, which are conventionally
associated with the values 1 and 0, respectively.

Each type of logical operation is called a gate.
Graphically, a gate is represented by a box, with
horizontal lines to the left representing input chan-
nels and horizontal lines to the right representing
output channels (see Fig. 1). The operation of the
gate is specified by a truth table, which specifies
the output values as function of the input values.
Below, for compactness, we express these outputs
as simple algebraic functions of the inputs.

E. Unary and binary gates

There are four unary gates (i.e., gates that take
one bit as input): The identity gate Idx = x which
lets the bit intact, the not gate NOTx = 1−x which
inverts (or flips) the value of the bit, and the two re-
set gates ALWAYS TRUEx = 1, ALWAYS FALSEx =
0, for which the output is independent of the input.

There are 16 binary gates (gates that take two
bits as input), of which the following ones are par-
ticularly noteworthy: The and gate xAND y = xy,
which outputs TRUE only if both x and y are TRUE,
the or gate xOR y = x+y−xy, which outputs TRUE
if at least one of x and y are TRUE, the exclusive-
or gate xXOR y = x + y − 2xy ≡ x ⊕ y (where ⊕
denotes addition modulo 2), and the negated-and
gate xNAND y = 1 − xy. These gates are not inde-
pendent; for example, we can write

xXOR y = (xOR y) AND (xNAND y).

Indeed, it is possible to write all unary and binary
operations only using the NAND gate (e.g., NOTx =
xNANDx). Together with the capability to replicate
(or copy) information, this is sufficient to achieve
all possible operations.

F. Reversible gates

With exception of Id and NOT, the gates dis-
cussed so far are irreversible: knowing only the
output, it is impossible to infer the input. It is
noteworthy that one can also implement classi-
cal computations with a set of reversible gates,
which have additional output channels that al-
low to infer the input values (see Fig. 2). The
most important example is the controlled-not gate
xCNOT y = (x, xXOR y), which flips the target

FIG. 2 Circuit representation of some reversible classi-
cal gates.

8

bit y if the control bit x is TRUE, and otherwise
leaves the target bit unchanged (the first bit there-
fore controls whether the second bit is flipped or
not). Because xCNOT 0 = (x, x), this gate can
be used to copy information. Another example
is the SWAP gate x SWAP y = (y, x), which inter-
changes the values of the two bits. As indicated
in Fig. 2, this can be implemented by combining
three CNOT gates. The figure also shows two im-
portant reversible three-bit gate, the Toffoli gate
(also known as CCNOT gate), which transforms
(x, y, z) → (x, y, (xAND y) XOR z), and the Fredkin
gate (also known as controlled swap), which trans-
forms (0, y, z) → (0, y, z) and (1, y, z) → (0, z, y). A
universal set of reversible gates needs to include
at least one of these three-bit gates.

G. Complexity of computational tasks

We will later see that quantum computers can
achieve certain tasks in a relatively small number
of operations. In order to gauge their efficiency,
it is useful to distinguish computational tasks by
their complexity. Let us assume we want to operate
on registers with N bits, and denote the number of
operations required for specific a task (such as the
multiplication of two numbers with N/2 bits) by T .
If T grows as a polynomial with N , the task is rela-
tively simple; this pertains, e.g., to arithmetic and
algebraic tasks, such as matrix inversion. Prob-
lems of this kind are grouped into complexity class
P . Many problems, however, are much harder, and
require a number of operations T which grows ex-
ponentially with N . A notable example is the fac-
torization of large numbers into prime factors, for
which no algorithm in P is known. For this specific
problem it is, however, easy to verify that the solu-
tion (once found) is correct — this simply requires
multiplication of the factors, which is a task in P .
Such problems are called nondeterministic polyno-
mial, and grouped in class NP. Interestingly, there
are problems to which all other NP problems can
be reduced; such problems are called NP-complete,
and a large number of them is known. What is
not known is the answer to the fundamental ques-
tion whether the complexity classes P and NP ac-
tually differ — one cannot exclude that there is
an undiscovered algorithm which solves an NP-
complete problem in a polynomial number of op-
erations. If such an algorithm would be identified,
it could be used to solve all NP problems much
more efficiently than presently possible.

H. Practical issues

In order to build a workable computer, the the-
oretical concepts presented here must be com-
plemented by practical considerations. Available
computers preferably use irreversible logics based
on gates which dissipate energy, not least because
this provides a much larger degree of stability than
reversible gates. For efficiency, they use more than
a minimally required set of gates, which reduces
the number of necessary operations. Furthermore,
they use many different methods to physically rep-
resent the bits, e.g., by means of different voltages
in components of the electronic circuit in the pro-
cessing unit, or by different magnetization of do-
mains in hard-disk storage units. Over the years,
the feature size of electronic circuits has shrunken
steadily, which slowly but surely brings them close
to the threshold where they become susceptible to
quantum effects. As we will see in the next sec-
tions (III-V), these effects are not necessarily un-
welcome, as they can be exploited to achieve tasks
that are hard to achieve with classical computers,
which leads to the concept of a quantum computer.
However, quantum computation is far more error
prone than classical computation, which brings
about a new range of practical issues that are dis-
cussed in section VI.B.

III. QUANTUM INFORMATION REPRESENTATION AND
MANIPULATION

This section introduces quantum bits (qubits)
and quantum gates, and discusses some underly-
ing concepts such as quantum parallelism (arising
from the superposition principle), entanglement as
a resource for computation, and the no-cloning
theorem. These concepts clearly distinguish quan-
tum computers from classical computers, and are
the reason why (in principle) the former are far
more powerful than the latter.

A. Quantum bits

Quantum computers encode information into
the quantum state of a composite system, con-
sisting of a number of two-state systems known
as qubits (quantum bits). Taken individually, each
qubit can be described by a quantum state |ψ〉 =
α|0〉+β|1〉. The basis states |0〉 and |1〉 form the com-
putational basis, and represent classical bits with
values 0 and 1. What is special about qubits is that
their general state |ψ〉 can also be a superposition
of 0 and 1, which cannot be realized by a classical
bit. In this case, |α|2 and |β|2 give the probabilities
to find 0 or 1 in a measurement of the qubit in the
computational basis [associated with the operator

9

(I − Z)/2], which on the Bloch sphere depend on
the polar angle θ. Measurements of other observ-
ables (like X or Y) give access to other combina-
tions of α and β, which also depend on the phase
φ = arg(α∗β) of the qubit. However, since measure-
ments change the state of the qubit, it is not pos-
sible to directly encode information into the com-
plex numbers α and β; this distinguishes quantum
computers from analog computers.

An N-bit quantum register contains N qubits.
The state of the register is then formed using the
N = 2N computational basis states |xN−1 . . . x1x0〉,
where xN−1 . . . x1x0 is the binary code of numbers
x =

∑N−1
n=0 xn2n ranging from 0 to 2N − 1. Here, we

will not drop leading zeros (thus, for N = 4 we write
0010 for the decimal number 2) because they de-
scribe the state of some of the qubits. Sometimes,
we denote these states by the corresponding num-
bers x; e.g., for a 4-bit register, |3〉 ≡ |0011〉 and
|0〉 ≡ |0000〉.

Just as the individual qubits, the register may be
brought into a superposition of the computational
basis states. For instance, one can form the state

|Ψ〉 ≡ 2−N/2
∑

xn=0,1

|xN−1 . . . x1x0〉 = 2−N/2
2N−1∑
x=0

|x〉,

which contains all binary numbers between 0 and
2N − 1 at the same time. All these numbers there-
fore can be manipulated at once by a single physi-
cal operation on the register. This feature is some-
times described as quantum parallelism, and will
be frequently exploited in Section V.

The state |Ψ〉 given above is still separable, and
therefore can be obtained by operating on the in-
dividual qubits. The real power of the register is
unleashed when one considers that the qubits in
the register can also be entangled, which can be
achieved by manipulating pairs of qubits. We next
explore how entanglement is linked to information
and then have a look at a number of basic quan-
tum operations on the register which enable to ex-
ploit these special features of qubits.

B. Quantum information

Quantum mechanically, the entropy of a system
with density matrix ρ̂ is given by the von Neumann
entropy

S(ρ̂) = −tr ρ̂ log2 ρ̂.

This is identical to the Shannon entropy, with the
probabilities pn replaced by the eigenvalues of ρ̂.
It follows that a system in a pure state has von-
Neumann entropy S = 0.

Classically, the entropy of a subsystem A is al-
ways less than the entropy of a composite system

with parts A and B: SA, SB < SAB. Quantum me-
chanically, the entropy S(ρ̂A) of a subsystem fol-
lows by inserting the reduced density matrix, and
can be larger than the entropy of a composed sys-
tem. This is in particular the case when an entan-
gled systems is in a pure state. The entropy of the
composite system vanishes, but it is finite for each
of its parts because the reduced density matrices
are mixed (see section I.G). For composite systems
that are already in a mixed state, this leads to the
more sophisticated measures of entanglement also
mentioned in that section.

In terms of data compression, the von Neumann
entropy plays a similar role as the Shannon en-
tropy: it describes how many qubits are necessary
to transmit a certain amount of (quantum) infor-
mation (this can be quantified via Schumacher’s
noiseless channel coding theorem).

How much information can be transmitted via
a single qubit? Assume that the incoming data
stream is composed of states described by a den-
sity matrix ρ̂i, which can be assumed to be mixed
because of limitations in the preparation or trans-
mission of the qubit states. It then can be shown
that the maximally accessible amount of infor-
mation I per qubit cannot exceed a certain limit,
I < S(ρ̂) −

∑
n PiS(ρ̂i) ≡ χ, where ρ̂ =

∑
i Piρ̂i,

and Pi is the fraction of qubits with density matrix
ρ̂i. This inequality is known as the Holevo bound,
and the quantity χ is the Holevo information. Note
that when all ρ̂i are pure, S(ρ̂i) = 0, and therefore
χ = S(ρ̂).

The Holevo bound implies that a single qubit
cannot transmit more than one bit of classical in-
formation. However, as embodied by the super-
dense coding scheme discussed next, if sender
and receiver possess as an additional resource a
number of shared entangled qubits, it is possi-
ble to transmit two bits of classical information
via a single (entangled) qubit. Indeed, the appli-
cations below show that entanglement is a useful,
non-classical resource for communication. En-
tanglement can also be used for error correction
schemes, as will be discussed in section VI.A.

In order to quantify entanglement of a (many-
body) state |ψ〉, it is useful to determine how many
maximally entangled Bell pairs one could gener-
ate (by local operations within each subsystem, and
classical communication) if one had many copies of
the state |ψ〉. This results in the entanglement of
formation, which is an additive measure of entan-
glement, and therefore constitutes the appropriate
counterpart to the information measure provided
by the Shannon entropy. As discussed in Sec. I.G,
for pure states the entanglement of formation sim-
ply reduces to the von Neumann entropy of the
subsystems. This applies even for the case that
each subsystem has more than two possible quan-

10

tum states. For mixed states, however, explicit ex-
pressions are only known for some special cases,
such as for two qubit-systems (see again Sec. I.G).

C. Quantum gates as unitary operations

Since solutions of the Schrödinger equation can
be written as a time-dependent unitary transfor-
mation of the initial state, all quantum gates are
represented by unitary operators, |ψf〉 = Û |ψi〉,
where |ψi〉 is the initial state of the register, and |ψf〉
is the final state of the register. Computational al-
gorithms furthermore complement these gates by
mechanisms to prepare the register in an initial
state, as well as mechanisms to read out the final
state (which can be achieved by measurements).
In the remainder of this section we concentrate on
the unitary quantum gates.

First, a general observation: Because unitary
operators can be inverted, all quantum gates are
reversible: the input state can be inferred from
|ψi〉 = Û†|ψf〉. This also entails an important con-
straint onto quantum operations: The no-cloning
theorem, according to which it is impossible to
transfer the state of a control qubit to a target
qubit without erasing the state of the control qubit.

Even though the quantum gates are reversible,
a universal set of gates can be formed using only
unary and binary gates; no three-bit gates are re-
quired. On the other hand, we need to consider
a larger variety of such gates — besides achieving
the classical logical tasks, we need gates that put
qubits into non-classical superpositions of 0 and
1, and gates that establish entanglement between
the qubits. Fortunately, this can be achieved by
using a finite number of unary gates, plus a single
binary gate. Circuit representations of these gates
are shown in Fig. 3.

D. Single-qubit gates

All unary (single-qubit) gates can be represented
as 2×2-dimensional unitary matrices, which act on

the two component vector ψ =

(
α
β

)
representing

the state |ψ〉 = α|0〉 + β|1〉. Just as hermitian ma-
trices, these can be generated by combining the
Pauli matrices X, Y , and Z, as well as the identity
matrix I. The latter leaves the state of the qubit
unchanged, and therefore constitutes the quan-
tum analogue to the identity gate Id. Furthermore,
considering that X|0〉 = |1〉 and X|1〉 = |0〉, X repre-
sents the analogue to the classical NOT gate. For a
general state |ψ〉 = α|0〉+ β|1〉 of the qubit, applica-
tion of this gate yields X|ψ〉 = β|0〉 + α|1〉. Because
they are irreversible, the two remaining classical

FIG. 3 Circuit representation of elementary quantum
gates.

unary gates ALWAYS TRUE/FALSE do not have
unary quantum analogues.

Clearly, I and X do not exhaust all possible
transformations of a qubit. On the Bloch sphere,
X represents a rotation by 180◦ about the x axis,
while I leaves the state untouched. However, we
can also operate, e.g., with Z, which flips the phase
of the qubit (this advances the azimuthal angle φ
by π). The most general single-qubit transforma-
tions correspond to rotations of the Bloch sphere
about an arbitrary axis n̂ = (nx, ny, nz), by an arbi-
trary angle ϕ. Such general rotations can be writ-
ten as

Rn̂(ϕ) = exp[−iϕ(nxX + nyY + nzZ)/2]

= cos(ϕ/2)I − i sin(ϕ/2)(nxX + nyY + nzZ).

Fortunately, not all rotations are independent:
E.g., following from the identity Y = iXZ, Y (a 180◦

rotation about the y axis) can be obtained by com-
bining X and Z (rotations about the x and z axis,
respectively).

An example of a set of elementary rotations
which can be combined to generate all possible ro-
tations is given by the following three gates: the
π/8-gate

T =

(
1 0

0 (i+ 1)/
√

2

)
,

11

the phase gate

S = T 2 =

(
1 0
0 i

)
,

and the Hadamard gate

H =
1√
2

(X + Z) =
1√
2

(
1 1
1 −1

)
.

Here, T and S generate 45◦ and 90◦ rotations about
the z axis, respectively, while H generates a 180◦

rotation about the (1, 0, 1) direction. Starting, say,
from the initial state |0〉, these operations can be
used to bring the qubit into any general superpo-
sition state α|0〉+ β|1〉.

Below, we will also often use ϕ-rotation gates
about the Y axis, which have the form

R(ϕ) = cos(ϕ/2)I−i sin(ϕ/2)Y =

(
cos(ϕ/2) − sin(ϕ/2)
sin(ϕ/2) cos(ϕ/2)

)
.

E. Two-qubit gates

General two-qubit gates are represented by 4 ×
4-dimensional unitary matrices, which act on the
four component vector

ψ =

 α
β
γ
δ

representing a state |ψ〉 = α|00〉+β|01〉+γ|10〉+δ|11〉.

The most important gate is the quantum version
of the controlled-not gate CNOT, which negates the
target qubit if the control qubit is in |1〉, and leaves
the target unchanged if the control qubit is in |0〉;
the control qubit always remains in its initial state.
If qubit 1 is the control bit, this is represented by
the matrix

C12 =

 1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 ;

for reversed roles we have

C21 =

 1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

 .

Starting, say, from the separable state |ψ〉 =√
1/2(|0〉+|1〉)|0〉 =

√
1/2(|00〉+|10〉), we find C12|ψ〉 =√

1/2(|00〉 + |11〉), i.e., one of the Bell states. The
CNOT gate can therefore be used to entangle two
qubits.

In block notation, the matrix C12 can also be

written as C12 =

(
I 0
0 X

)
. Replacing X by an ar-

bitrary unary gate U delivers controlled versions
of each unary gate, denoted as controlled-U gates.
An example is the controlled phase flip, which is
obtained for U = Z. Another notable two-qubit gate
is the quantum version of the SWAP gate, which is
represented by the matrix

S12 =

 1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

 .

F. Composition of gates

In order to manipulate the information in the
register, we need to apply unary and binary gates
to the individual qubits. Unary gates U operating
on the nth qubit in the register will be denoted by
Un. Analogously, binary gates acting on qubits n
and m will be denoted by Unm. Here, order of the
indices matters — in general, Unm 6= Umn. In par-
ticular, for controlled gates, we will use the first
index to refer to the control qubit, while the sec-
ond index refers to the target qubit.

We can now combine unary and binary gates to
achieve arbitrary operations on the register. For
instance, the realization of the SWAP gate in terms
of three CNOT gates, already known from the clas-
sical case, takes the form S12 = C12C21C12.

The combination of quantum gates allows to
achieve tasks that would require more compli-
cated gates if done classically. Some examples
are listed in Fig. 4. Consider the operation U =
H1H2C12H1H2, which first applies Hadamard gates
to the two qubits, then acts with a CNOT gate,

FIG. 4 Quantum circuits which implement the exchange
of control and target bit, as well as the realization of a
controlled-controlled-U gate.

12

FIG. 5 Reduction of the Toffoli gate to unary and binary
quantum gates. In analogy to Fig. 2, the Fredkin gate is
obtained by two additional CNOT operations.

and finally again applies Hadamard gates. Using
matrix multiplications, we find that for all initial
states, this is equivalent to U = C21. Therefore,
amazingly, decorating the gate with single-qubit
operations allows to exchange the roles of the con-
trol and target qubits. Classically, this exchange
would require additional binary gates. Similarly,
we can obtain classical three-bit gates by combi-
nation of unary and binary gates. For instance,
as shown in the figure, a general controlled-
controlled-U gate can be obtained by controlled-V
gates, where V 2 = U .

The Toffoli gate (controlled-controlled-not, CC-
NOT), which classically has to be introduced sepa-
rately to achieve unversal reversible computations,
follows for V = (1− i)(I + iX)/2, such that V 2 = X.
Just as in the classical case, the Fredkin gate
is obtained by two additional CNOT operations,
F123 = C32T123C32. Up to a phase factor, the Toffoli
gate can also be achieved by using Y -rotations,

eiϑT123 = R3(−π/4)C13R3(−π/4)C23R3(π/4)C13R3(π/4)

(see Fig. 5). Here, the phase factor ϑ changes the
sign of the basis state |100〉, but leaves all other
basis states unchanged.

Figure 6 shows combinations of gates which
serve as frequent components of the quantum al-
gorithms discussed in the following section. (a)
The gate C12H1 entangles qubits 1 and 2 that are
initially prepared in computational basis states:

C12H1|00〉 =
√

1/2(|00〉+ |11〉) ≡ |β00〉,
C12H1|01〉 =

√
1/2(|01〉+ |10〉) ≡ |β01〉,

C12H1|10〉 =
√

1/2(|00〉 − |11〉) ≡ |β10〉,
C12H1|11〉 =

√
1/2(|01〉 − |10〉) ≡ |β11〉.

(b) Application of U =
∏
nHn (i.e., acting with the

Hadamard gate on each qubit) transforms an N-

qubit register with initial state |0〉 = |000 . . . 000〉 into

U |ψ〉 = 2−N/2
∑

xn=0,1

|xN−1 . . . x2x1x0〉 ≡ |Ψ〉,

the superposition of all states of the computational
basis, which represents all binary numbers in the
range of the register. (c) When the initial state is
another computation basis state |x〉, the action of
a Hadamard gate on an individual qubit can be
written as

H|xn〉 =
|0〉+ (−1)xn |1〉√

2
=

1√
2

∑
zn=0,1

(−1)xnzn |zn〉.

When we act with Hadamard gates on all the
qubits in the register, we obtain the expression∏

n

Hn|x〉 = 2−N/2
∑
z

(−1)x·z|z〉,

where x · z = x0z0 + x1z1 + . . . + xN−1zN−1 denotes
the bitwise product of x and z.

G. Function gates

An important class of gates encountered in the
following applications implement functions f : x→
f(x), where x is an N-bit input, and f(x) is an M-
bit output (see Fig. 7). In general, such functions
are not invertible. The bottom panel of the figure
shows a strategy to implement reversible versions
of these functions: add auxiliary output channels
which keep track of the input, and auxiliary input
channels which when set to 0 gives the desired out-
come. (The auxiliary channels are called ancillas,
and also feature prominently in error correction,
section VI.A.) This can be achieved using the bit-
wise XOR operation

f ⊕ y = fM . . . f1f0 ⊕ yM . . . y1y0

= (fM ⊕ yM) . . . (f1 ⊕ y1)(f0 ⊕ y0).

FIG. 6 Creating entanglement and superpositions using
Hadamard gates.

13

Functions with single-bit output are called
Boolean functions (because their output can be in-
terpreted as 0=FALSE, 1=TRUE). If the input x is
also only a single bit, there are exactly four func-
tion gates, which can be implemented in terms of
elementary gates as shown in Fig. 8. If the auxil-
iary input state is set to |y〉 = |0〉, they implement
reversible versions of the four classical unary op-
erators discussed in section II.E.

IV. QUANTUM COMMUNICATION

Quantum communication concerns the transfer
of information, and uses entanglement as a re-
source in order to achieve classically impossible
tasks. In the sections below we discuss three ex-
amples: the transmission of two bits of informa-
tion by sending a single qubit (superdense cod-
ing); the transfer of the quantum state of one qubit
to another qubit at a distant location (teleporta-
tion), and the generation of unbreakable encryp-
tion codes for secure communication. All these
tasks can be achieved with current technology.

A. Superdense coding

Superdense coding is a simple scheme which
illustrates how entanglement can facilitate the
transmission of information. The scheme is il-
lustrated in Fig. 9(a). Here and in the follow-
ing, double-lines indicate classical transmission or
control channels. By convention, sender and re-
ceiver are designated the names Alice and Bob (or
A and B), respectively. Initially, Alice and Bob each
are in possession of a single qubit. In the dis-
tant past (say), they met and prepared these qubits
in the entangled Bell state |β00〉 = 1√

2
(|00〉 + |11〉).

Now, Alice and Bob are located at distant loca-
tions (this handed down tale is intended to con-
vey how the scheme will exceed classical expecta-
tions, but most of these embellishments are not

FIG. 7 Function gates.

FIG. 8 (a) Boolean function gates with single-bit input.
(b) Implementation in terms of elementary gates.

FIG. 9 Circuit representations of (a) superdense cod-
ing and (b) quantum teleportation. Double-lines denote
classical communication channels. The dashed box in-
dicates operations carried out by the sender (Alice); all
other operations are carried out by the receiver (Bob).

necessary—e.g., A&B could have received their en-
tangled qubits from an appropriate, distantly lo-
cated two-photon source). Alice can now decide
whether she wishes to carry out two operations on
her qubit—first a NOT operation (X), then a phase
flip (Z). This results in the state ZM1

1 XM2
1 |β00〉,

where Mi = 1 if the operation was carried out,
and Mi = 0 if it was not carried out. Consider-
ing each case separately, we see that this trans-
forms the state into |βM1M2

〉, i.e., into one of the
four Bell states. Alice then sends her qubit—just
the single one—to Bob, who can use a CNOT and
a Hadamard gate to transform the qubit pair back
to the computational basis states, H1C12|βM1M2

〉 =
|M1M2〉 [this is just the inverse of the entanglement
procedure in Fig. 6(a)]. A measurement of both
qubits in the computational basis therefore allows
him to infer both M1 and M2. In effect, using en-
tanglement as a resource, Alice has sent Bob two

14

bits of information.

B. Quantum teleportation

Quantum teleportation addresses the task of
transferring the unknown and arbitrary state of
one qubit to another, possibly distant qubit. Be-
cause of the no-cloning theorem, this requires to
erase all information from the first qubit. How this
can be achieved is shown in Fig. 9(b). Before con-
sidering the details, note the striking similarities to
the circuit for superdense coding—most notably,
Alice and Bob again share a Bell pair, and the set
of operations they carry out is just interchanged.
However, Alice is now also in possession of an ex-
tra qubit, whose state |ψ〉 = α|0〉 + β|1〉 she wishes
to transmit to Bob. She does not know the com-
plex amplitudes α and β, and she cannot send the
qubit itself, but she can send classical informa-
tion along a transmission line (e.g., by phone). To
succeed, she first entangles the two qubits in her
possession by applying a CNOT and a Hadamard
gate. This results in the three-qubit state

H1C12|ψ〉|β00〉 =
1

2
[α(|0〉+ |1〉)(|00〉+ |11〉)

+β(|0〉 − |1〉)(|10〉+ |01〉)]

=
1

2
[|00〉(α|0〉+ β|1〉) + |01〉(α|1〉+ β|0〉)

+|10〉(α|0〉 − β|1〉) + |11〉(α|1〉 − β|0〉)],

where the second line follows by reordering the
terms. Next she measures the two qubits in her
possession, and sends her measurement results
M1 and M2 to Bob. This allows him to infer how
the post-measurement state |ϕ〉 of his qubit is re-
lated to the former state |ψ〉:

M1M2 = 00 ⇒ |ϕ〉 = α|0〉+ β|1〉 = |ψ〉
M1M2 = 01 ⇒ |ϕ〉 = α|1〉+ β|0〉 = X|ψ〉
M1M2 = 10 ⇒ |ϕ〉 = α|0〉 − β|1〉 = Z|ψ〉
M1M2 = 11 ⇒ |ϕ〉 = α|1〉 − β|0〉 = XZ|ψ〉.

Therefore, in order to obtain |ψ〉, he simply applies
ZM1XM2 to his qubit.

C. Secure communication

Secure quantum communication schemes rely
on the no-cloning theorem, which prevents an
eavesdropper (’Eve’) to listen to a communication
line (either, Eve will not acquire any information,
or her actions can be detected).

Secure communication based on superdense cod-
ing.—If Eve would intercept the qubit sent between
Alice and Bob, she only possesses a qubit with re-
duced density matrix 1

2 Î, which is independent on

the two bits M1 and M2 that Alice is sending. How-
ever, Eve could still send an arbitrary qubit to Bob,
which would result in him obtaining random val-
ues for M1 and M2, as well. This can be detected
when Alice and Bob compare parts of their mes-
sages.

Quantum key distribution.—To make communi-
cation both secure and reliable, one can generate
an encryption key shared by Alice and Bob. The
message can then be sent classically using a sim-
ple encryption technique (e.g., by using XOR oper-
ations, which flips bits according to a shared se-
quence of 0’s and 1’s.).

(a) The BB84 protocol (due to Bennett and Bras-
sard) is a protocol that does not require entangle-
ment. Alice prepares qubits randomly in one of the
following four states:

|0〉, |1〉, |±〉 =
√

1/2(|0〉 ± |1〉).

These are the eigenstates of the Z and X opera-
tor. Alice makes sure that she uses a prepara-
tion method that tells her which state she has pre-
pared (e.g., this can be done by making random X
and Z measurements on qubits with density ma-
trix ρ̂ = 1

2 Î). She then sends these qubits to Bob,
who, for each qubit, randomly measures either X
or Z. When he measures X and the qubit was in
state |+〉, he will obtain 1 with certainty, while if
the state was |−〉, he will obtain −1 with certainty.
If the state was |0〉 or |1〉, he will obtain 1 or −1
with 50% probability. In contrast, if Bob measures
Z, he will obtain certain measurement outcomes 1
and −1 for the states |0〉 and |1〉, respectively, while
the states |±〉 result in random measurement out-
comes. Bob now tells Alice which measurements
he did for each qubit, and Alice tells Bob which
measurements she did to prepare the qubits (they
only communicate the type of measurement, X or
Z, but not their outcomes). For these instances,
their measurements will have resulted in the same
outcome, which results in a shared sequence of 0’s
and 1’s that they can use for encryption.

An eavesdropper listening to the key distribution
would be able to make measurements on an inter-
cepted qubit, but without knowledge of its prepa-
ration would not be able to then forward the same
qubit to Bob. This would introduce errors into the
key (at a rate of 25%), which can be detected when
Alice and Bob compare small samples of their key
(this part of the key would then be discarded).

The BB84 scheme is simple and robust, and has
been implemented experimentally using photons,
for which the four states correspond to polariza-
tions in x̂, ŷ, x̂ + ŷ, and x̂ − ŷ direction. (E.g., in
1997, the scheme was demonstrated using a 23
km long transmission line beneath Lake Geneva.)

(b) The EPR protocol (due to Eckert) uses pair-
wise entangled qubits prepared in the Bell state

15

FIG. 10 Classical adder circuits.

|β00〉 =
√

1
2 (|00〉 + |11〉), which can also be written

as |β00〉 =
√

1
2 (|+〉|+〉+ |−〉|−〉). Alice and Bob make

random measurements of X and Z on each of their
qubits, and then communicate to each other to
find out for which qubits they did the same mea-
surement. For each of these instances, they are
then guaranteed to have found the same outcome.
Again, an eavesdropper would introduce errors,
and can be detected by sacrificing a small random
sample of the key.

In combination with classical encoding schemes
that encode messages into longer bit sequences
(see error correction, in section VI.A) these proto-
cols can be made reliable against a finite error rate,
and secure even against sophisticated eavesdrop-
pers attacks that involve the collective manipula-
tion of the whole qubit stream.

V. QUANTUM COMPUTATION

This section discusses the most important
quantum-computation algorithms, associated with
the names Deutsch and Josza, Shor, and Grover.
To get a feeling of algorithms we start with the sim-
ple, classical example of adding two numbers.

A. Adding numbers

The discussion in Section III implies that quan-
tum computers can achieve, at least, the same
tasks as a classical computer. Since this requires

reversible logics, we first illustrate this by an ex-
ample, namely, the computation of the sum of two
numbers.

Binary numbers can be added just like decimal
numbers, bit by bit starting with the least signifi-
cant bits, and carrying over bits to the next more
significant bit. Consider, e.g., the sum 3 + 3, which
in binary code is 11 + 11. We first add the last
two bits (i.e., the least significant bits), resulting
in 1 + 1 = 10. The last bit of this (0) is the last bit
of our result, while the first bit needs to be carried
over. We then add the first two bits, and to this the
carry-on bit, giving 1+1+1 = 11. This again results
in a carry-on bit. There are no further bits to be
processed, so the carry-on bit becomes the most
significant bit. Our result now has three bits: 110,
which is the same as 4 + 2 + 0 = 6.

In classical computers, these operations can be
carried out using half-adder and full-adder com-
ponents, which can be realized using elementary
binary gates as shown in Fig. 10. Because of
x + y = y + x, the depicted circuit is irreversible
(furthermore, it requires to copy bits). Figure
11 shows that the same operations can also be
achieved quantum mechanically using a combina-
tion of reversible CNOT and CCNOT gates, which
generate additional outputs that can be used to re-
verse the calculation.

Adding two numbers with reversible gates does
not increase the efficiency of the algorithm. This is
in contrast to the following examples, which con-
cern true quantum algorithms that solve specific
tasks more efficiently than classical algorithms.

B. Deutsch-Josza algorithm

Efficient quantum algorithms generally exploit
the quantum parallelism to carry out many cal-
culations in one step, which is particularly use-
ful if one is interested in a global property of
these calculations. This is nicely illustrated by the

FIG. 11 Reversible half adder and full adder circuits.

16

FIG. 12 Deutsch and Deutsch-Josza algorithms.

Deutsch-Josza algorithm, which allows to estab-
lish a specific feature of certain Boolean functions
f : x→ {0, 1} that specifically fall into one of the fol-
lowing two classes: either the function is constant
(i.e., the output bit f is either always 1, or always
0), or it is balanced (i.e., the output bit is 0 for one
half of the input values, and 1 for the remaining
half).

Assume that we are given a function f(x) which
is guaranteed to be either constant or balanced,
but at the outset we do not know to which of the
two classes it belongs. Classically, we need at least
two function evaluations to find out that a function
is balanced—and this is only in the fortunate case
that we immediately pick two inputs for which the
outputs differ. In order to certify that a function
is constant we need 2N/2 + 1 = 2N−1 + 1 function
evaluations—that’s because if the function is bal-
anced, we may by chance first pick 2N/2 inputs
that all result in the same output. In contrast, us-
ing quantum gates, the Deutsch-Josza algorithm,
shown in Fig. 12, requires only a single function
evaluation to determine whether the function is
constant or balanced. (The upper panel of the fig-
ure shows the Deutsch algorithm, the special case
of a function f(x) with single-bit input, which is
addressed on worksheet 3.)

Starting from the initial state |ψ0〉 = |0 . . . 001〉,
Hadamard gates are used to form the superposi-
tion

|ψ1〉 =
∏
n

Hn|ψ0〉 = 2−N/2
∑
x

|x〉 |0〉 − |1〉√
2

= |Ψ〉 |0〉 − |1〉√
2

(see also Fig. 6(b)). If f(x) = 1, the function gate
changes the state of the last qubit into |1〉−|0〉√

2
=

− |0〉−|1〉√
2

; for f(x) = 0, the state of this qubit re-

mains |0〉−|1〉√
2

. Therefore, the function gate intro-

duces factors (−1)f(x) in front of each basis state

FIG. 13 Grover search algorithm.

|x〉, resulting in

|ψ2〉 = Uf |ψ1〉 = 2−N/2
∑
x

(−1)f(x)|x〉 |0〉 − |1〉√
2

.

In the final step, Hadamard gates are applied to all
but the last qubit. Using the result shown in Fig.
6(c), this delivers the final state

|ψ3〉 = 2−N
∑
z

∑
x

(−1)x·z+f(x)|z〉 |0〉 − |1〉√
2

.

Let us now have a look at the amplitude of
the state with |z〉 = |0〉, which is given by
2−N

∑
x(−1)f(x). If f(x) is balanced, this amplitude

vanishes. On the other hand, if f(x) = c is con-
stant, this amplitude takes the value ±1 (depend-
ing on whether c = 0 or c = 1). Therefore, if f
is constant, a measurement of all qubits will find
them all taking the value 0, while this will never
happen if the function is balanced. Remarkably,
using quantum parallelism, the distinction of both
cases has been achieved with a single operation of
the function gate.

A notable ingredient of the Deutsch-Josza is the
introduction of conditional phase factors (such as
(−1)f(x)) in front of each of the computational basis
states. This strategy is also at the core of the prac-
tically more important algorithms discussed next.

C. Grover’s quantum search algorithm

Grover’s quantum search algorithm exploits
quantum parallelism to speed up the search for
solutions among a large set of candidate solutions.
A prime example is the search for entries in a
database which match to a given key. Let us enu-
merate all entries by an integer index x, and as-
sume for simplicity that the size of the database is
N = 2N . The entries matching the key can then be
characterized by an oracle function f(x), which is
a Boolean function that returns f(x) = 1 if entry x
matches to the key; otherwise, f(x) = 0.

17

Assume that there are M� N entries matching
the key. Classically, we need to make ≈ N/M� 1
queries of the database (or calls of the oracle func-
tion) to find one of these entries. The Grover algo-
rithm, shown in Fig. 13, only requires O(

√
N/M)

calls of the oracle function—not an exponential
speedup, but still sizeable when the database is
large.

The first step initializes the index register in the
now very familiar equal-superposition state |Ψ〉.
This is followed by a sequence of operations G,
known as the Grover iterate, in which the ora-
cle gate Ô is called once. Its action is defined to
flip the phase of all solutions: Ô|x〉 = (−1)f(x)|x〉.
As we have seen in the Deutsch-Josza algorithm,
this can be achieved with a function gate acting
as Ôf |x〉|q〉 = |x〉|f(x) ⊕ q〉, where the oracle qubit
q is initialized as

√
1/2(|0〉 − |1〉) (Fig. 13 reserves

N ′ workspace qubits for the implementation of the
oracle). The Grover iterate also contains a con-
ditional phase gate P = 2|0〉〈0| − Î, which inverts
the phase of all computational basis states with
exception of the state |0〉. This is embedded into
Hadamard gates, resulting into

P ′ = (
∏
n

Hn)(2|0〉〈0| − Î)(
∏
n

Hn) = 2|Ψ〉〈Ψ| − Î .

The Grover iterate can therefore be written as

G = (2|Ψ〉〈Ψ| − Î)Ô.

The purpose of the Grover iterate is to rotate the
initial state into the direction of the equal super-
position of solutions |X〉 ≡ 1√

M

∑M
m=1 |xm〉, where

we have enumerated all solutions as xm, m =
1, 2, 3, . . . ,M. This rotation takes place in a plane
spanned by |X〉 and |Y 〉 = 1√

N−M
∑N−M
m=1 |ym〉, the

equal superposition of all non-solutions ym, m =
1, 2, 3, . . . ,N − M. Figure 14 illustrates how this
works. The initial state can be written as

|Ψ〉 =
√
M/N|X〉+

√
1−M/N|Y 〉,

FIG. 14 Geometric interpretation of the Grover search.

FIG. 15 Two-bit Grover search algorithm.

and therefore lies in the X,Y plane. The unit vector

Ψ = (
√
M/N ,

√
1−M/N) = (sin θ/2, cos θ/2)

can be parameterized in terms of the angle θ/2
between Ψ and the Y axis. For M � N , θ =
2 arccos

√
1−M/N ≈ 2

√
M/N is small, such that

Ψ is almost parallel to the Y axis.
Per definition, the oracle function acts as

Ô(α|X〉+ β|Y 〉) = −α|X〉+ β|Y 〉,

which amounts to a reflection about the Y axis.
The phase gate P ′ performs another reflection, now
about the Ψ axis. As a result, the state is rotated
by an angle θ towards the X axis. Repeating this
rotation ≈ (π/4)

√
N/M times rotates the state vec-

tor close to the X axis—the misalignment will be
less than θ/2. With high probability, a measure-
ment of the final state will therefore deliver a solu-
tion xm of the search problem.

An instructive example is a two-bit search with
one solution x1, depicted in Fig. 15. Panel (a)
shows a realization of the P gate with H, X, and
CNOT gates (as a matter of fact, this realizes −P ,
but an overall phase factor of a quantum state is
non-detectable). Depending on the binary repre-
sentation of x1, the oracle function takes one of
four possible forms, which can be implemented us-
ing Toffoli (CCNOT) and X (NOT) gates as shown in
panel (b). For N = 4 = 22, M = 1, the angle of the
initial state vector Ψ with the Y axis is θ/2 = 30◦.
The Grover iterate rotates the state by θ = 60◦. A
single iteration therefore rotates the state onto the
X axis, which immediately identifies the matching
entry x1. In contrast, a classical search would on
average require 2.25 oracle calls before the solution
is found.

18

FIG. 16 Quantum Fourier transformation. The indicated swap gates simply invert the order of the output qubits,
which is convenient for subsequent applications.

D. Quantum Fourier transformation

Consider the Fourier transformation

f̃(z) = 2−N/2
2N−1∑
x=0

ωxzf(x)

of an N-bit function f . Here, we abbreviated
ω = e2πi/2

N

, such that ωxz = e2πixz/2
N

(where xz
is an ordinary, not bitwise, multiplication). Clas-
sically, implementation of the Fourier transforma-
tion takes O(2N) elementary gate operations. In
contrast, its quantum-mechanical analogue, the
quantum Fourier transformation

UQFT |x〉 = 2−N/2
2N−1∑
z=0

ωxz|z〉 ≡ |x̃〉,

can be implemented with O(N2) gate operations,
which constitutes an exponential increase in ef-
ficiency that can be exploited in a range of algo-
rithms.

The corresponding circuit is shown in Fig. 16.
The verification that the depicted circuit computes
the quantum Fourier transformation can be based
on the product representation

|x̃〉 = |zN−1〉|zN−2〉 · · · |z0〉,

where |zn〉 =
√

1/2(|0〉 + ω2nx|1〉). Because of the
2π periodicity of the phase, the phase factors can
be written as ω2N−nx = ei2π0.xn−1xn−2···x0 , where we
introduced the binary fractions

x/2n =

N−1∑
k=0

xk2k−n ≡ xN−1 · · ·xn.xn−1 · · ·x0

FIG. 17 Three-bit quantum Fourier transformation.

|0〉

|0〉

|0〉

|0〉

|u〉

H

H

H

H

U20 U21 U22 U2N−1

|f
0
〉

|f
1
〉

|f
2
〉

|f
N−1
〉

|u〉

QFT-1

FIG. 18 Phase estimation circuit.

in a notation analogous to the one denoting frac-
tional decimal numbers. As shown in the figure,
the required transformation of each qubit can be
achieved efficiently by first applying a Hadamard
gate, followed by phase rotation gates

Rn =

(
1 0
0 exp(2πi/2n)

)
that are controlled by the less significant qubits.

An instructive example is the three-bit quantum
Fourier transformation, where ω = exp(2πi/8) =

√
i.

In this case, R1 = T is the π/8 gate, and R2 = S is
the phase gate. The corresponding circuit is shown
in Fig. 17.

E. Applications: From phase estimation to prime
factorization

Phase estimation.—A key application of the
quantum Fourier transformation is the estimation
of the (reduced) phase φ of an eigenvalue λ = e2πiφ

of a unitary operator U , where 0 ≤ φ < 1. This
can be used for a problem called order finding,
which in itself is a central step in the prime fac-
torization of numbers. Phase estimation can also
be used for a problem know as quantum count-
ing. These problems are briefly discussed later; at
the moment it suffices to know that they involve
different operators U .

Given the eigenstate |u〉 corresponding to λ, φ
can be estimated efficiently as an N bit binary frac-
tion φ ≈ 0.φN−1φN−2 · · ·φ0 using the circuit shown

19

in Fig. 18. Since U |u〉 = λ|u〉 and λ = ω2Nφ, where
ω = e2πi/2

N

, the controlled-U2n operations in the
first part of the algorithm transform the qubits into
the state

√
1/2(|0〉 + ω2n(2Nφ)|1〉). With N-bit preci-

sion, 2Nφ ≈ φ′, where the integer number φ′ has
the N-bit representation φ′ = φN−1φN−2 · · ·φ0. The
intermediate state can therefore be approximated
by the product representation

|zN−1〉|zN−2〉 · · · |z0〉 = UQFT |φ′〉 = |φ̃′〉

of the Fourier-transformed N-bit estimate of 2Nφ,
whose binary digits φn are then recovered by an
inverse Fourier transformation.

Quantum counting.—A straightforward applica-
tion of the phase estimation algorithm is the de-
termination of the numberM of solutions in an N -
item search problem, as encountered in the Grover
search. In the X-Y plane, the rotation by one
Grover iteration can written as the

G =

(
cos θ sin θ
− sin θ cos θ

)
,

which is a unitary matrix with eigenvalues e±iθ.
We also know that |Ψ〉 lies in the X-Y plane, and
therefore is a superposition of the two correspond-
ing eigenstates, which can be fed into the slot for
|u〉.

Order finding.—Phase estimation can also be
used to solve the following number-theoretic prob-
lem: given two numbers a and M without com-
mon divisors, what is the order r of amodM , de-
fined as the smallest positive integer r such that
ar modM = 1? Here, the modulo operation deter-
mines the remainder of the division by M . The
order can be obtained by estimating the phase of
the eigenvalues λn = exp(2πin/r) of the operator
U |x〉 = |axmodM〉 (for x < M ; otherwise U |x〉 = |x〉,
which guarantees that U is unitary). Conveniently,
the sum of eigenfunctions

|un〉 =
1√
r

r−1∑
z=0

exp(−2πinz/r)|az modM〉

is independent of r,
∑
n |un〉 = |1〉. Therefore, ini-

tializing |u〉 = |1〉, the phase estimation algorithm
will deliver an approximation of n/r, where each
value n in the range 0 ≤ n < r appears with equal
probability 1/r. This suffices to reconstruct the or-
der r (most efficiently, by a method based on con-
tinued fractions).

Period finding.—Note that the order r is the pe-
riod of the function f(x) = ax modM , i.e., f(x) =
f(x+ r). It is noteworthy that a variant of the pro-
cedure above can be used to find the period of any
integer-valued function. The corresponding circuit
is shown in Fig. 19. The indicated intermediate

N

U
f

H⊗N|0〉

|0〉

xx

y y⊕f(x)

QFT-1

|ψ
2
〉|ψ

1
〉 |ψ

3
〉

FIG. 19 Period finding circuit. The indicated states are
specified in the text.

states are |ψ1〉 = |Ψ〉|0〉 and

|ψ2〉 = 2−N/2
2N−1∑
x=0

|x〉|f(x)〉 =
1√
r

r−1∑
n=0

|(̃n/r)′〉|f̂(n)〉,

where, as before, (n/r)′ denotes the N-bit estimate
of 2N (n/r), and the tilde indicates the Fourier-
transformed state. Furthermore, we abbreviated

|f̂(n)〉 =
1√
r

r−1∑
x=0

exp(−2πnix/r)|f(x)〉.

The inverse Fourier transformation converts this
into the final state

|ψ3〉 =
1√
r

r−1∑
n=0

|(n/r)′〉|f̂(n)〉,

so that the measurement of the output qubits in
the first register delivers an N-bit approximation
of 2N (n/r).

Prime factorization.—In a loose mathematical
sense, the factors of an integer number M can
also be interpreted as ’periods’ of that number.
Indeed, it turns out that the order-finding prob-
lem is equivalent to the problem of prime num-
ber factorization, and therefore can be solved effi-
ciently using phase estimation. This is embodied
in Shor’s factorization algorithm. Because the ac-
curate description of this algorithm requires vari-
ous number-theoretic concepts, we here only men-
tion one key ingredient: assume we have randomly
chosen a number a and found that the order r of
amodM is even (otherwise, start again with an-
other randomly chosen a). Then b = ar/2 is still
an integer, which fulfills

b2 modM = 1⇒ (b+ 1)(b− 1)modM = 0.

Furthermore assume that bmodM 6= −1 (other-
wise, start again. . .). It then follows that b+ = (b+1)
or b− = (b − 1) shares a nontrivial factor with M .
The largest factor (the greatest common divisor,
gcd) can be found efficiently using Euclid’s algo-
rithm: given c > d, iterate the identity gcd(c, d) =
gcd(d, cmod d) until the smaller number is a divisor
of the larger number; the smaller number is then
the gcd of c and d, which delivers a factor of M .

20

VI. ERROR CORRECTION AND PRACTICAL ISSUES

A. Errors and error correction

Errors occur both in computation as well as in
communication, and generally degrade informa-
tion content. In classical computation, typical er-
rors are flipped bits or lost data packages. A pri-
mary goal of hardware design is to make such
errors unlikely, which can be done, e.g., by uti-
lizing dissipation to stabilize the outcomes of ir-
reversible gate operations. This goal competes
with other goals such as speed, capacity, size,
stability, longevity, energy consumption, and, of
course, costs, which along with practical limita-
tions means that a certain amount of errors must
be tolerated. To cope with them, classical com-
putation algorithms and communication protocols
introduce a certain amount of overhead (redun-
dancy) into the information. This can be used to
detect whether errors have occurred (a step called
syndrome diagnosis), and preserves enough of the
information so that the errors can be corrected (by
recovery operations).

A simple example is the code

0L → 000, 1L → 111,

which represents one logical bit of information
(subscript L) in terms of three physical bits. If one
of the physical bits is flipped this can be detected
by comparison to the other bits, and subsequently
corrected following the rules

000, 001, 010, 100→ 0L; 011, 101, 110, 111→ 1L.

Following this scheme, only errors affecting two or
all three of the physical bits will result in an error
of the logical bit. A single-bit error probability p
will thus result in an error probability p2(3−2p) for
the logical bit, which is much less than p if p is
small.

Classical error correction of many independent
single-bit errors can be achieved when k logical
bits of information are encoded into a sufficiently
large number n of physical bits. The number of
differing bits of two code words is called their dis-
tance, and the smallest distance occurring in a
code is the distance of the code, d. Correction of
multiple errors then requires to identify the log-
ical code word with the smallest distance to the
register state, which is reliable unless the num-
ber of errors exceeds [(d − 1)/2] (here [·] denotes
the integer part of a number). In other words, d
determines the number of erroneous physical bits
that can be tolerated for reliable identification of
the logical bits. Classical error correction codes
of this kind are therefore often characterized by
the triple [n, k, d]. It should be noted that the dis-
tance is a useful characteristic only if the errors

are not correlated, i.e., if they only affect one bit at
a time. This does not apply, e.g., to a data package
loss, which yields undetermined values of a num-
ber of consecutive bits. The design of a resilient
error correction scheme therefore also depends on
an adequate error model, which identifies the types
of errors that are most likely to occur.

Quantum computation is sensitive to a wide
range of additional types of errors that affect the
amplitudes of individual or collective qubit states.
The implementation of gates is delicate because of
their linear and reversible nature, which prevents
the use of dissipation to stabilize the outcomes.
In particular, multi-qubit gate operations typically
require precise control of interactions, which can
also leak on to other qubits. Furthermore, multi-
qubit gates tend to propagate errors—e.g., an error
in the control bit of a CNOT gate will result in an
error of the target bit. To a larger extent than clas-
sical codes, therefore, quantum codes must rely on
a good error model.

Consider, for example, a system designed to real-
ize the Pauli X gate (NOT) by time evolution with a
Hamiltonian aX, which must be sustained for a set
time ∆t = ~π/2a (see worksheet 2). Imperfections
in the duration of this action will introduce errors
into the final states. Furthermore, the physically
realized Hamiltonian may differ from aX (e.g., it
may feature contributions proportional to Y and
Z, as well as many-qubit terms arising from inter-
actions), and all terms may fluctuate temporally.

An important source of these contributions is
the dynamics of the environment, i.e., all physical
components that are not directly participating in
the computational tasks. For example, the uncon-
trolled motion of charge carriers in parts of a de-
vice results in a fluctuating electromagnetic field.
External influences of this kind are worrisome be-
cause they generally cause the state of the quan-
tum register to become mixed: the register state
will depend on the environment, and therefore be-
comes entangled with it; its reduced density ma-
trix will therefore describe a statistical mixture.
This phenomenon, called dephasing or decoher-
ence, is undesirable because it negatively affects
the usable amount of entanglement (as we have
seen on worksheet 2 for the example of the equal
mixture of all four Bell states). Even more directly,
perturbed relative phases of quantum states also
negatively affect their superposition, i.e., quantum
parallelism.

Consequently, error correction schemes for
quantum information need to cope with a much
larger variety of errors—in principle, a continuum
of errors, which can affect the phase and magni-
tude of the amplitudes of the state. Moreover, they
cannot establish redundancy by copying the infor-
mation, which would violate the no-cloning theo-

21

|0〉

|0〉 X

X X

X

ancilla qubits

logical qubit

syndrome diagnosis recovery operations

FIG. 20 Three-qubit code for correction of single-qubit
flip (X) errors.

rem. Surprisingly, resilient quantum error correc-
tion strategies not only exist, but also get by with
a finite set of diagnosis and recovery operations—a
phenomenon known as error discretization.

In order to see how this comes about, let us
specialize to single-qubit errors. Such errors can
generally be represented by a unitary 2 × 2 ma-
trix U = a0I + axX + ayY + azZ, which transforms
an error-free physical qubit state |ψ〉 = α|0〉 + β|1〉
into the defective state U |ψ〉. The contribution X
flips the qubit with a probability depending on the
coefficient ax. An individual flip can be detected
and corrected by adapting the classical three-bit
scheme: Encode the two logical basis states into
three physical qubits, such that |0L〉 = |000〉 and
|1L〉 = |111〉. A logical-qubit state is then described
by a physical state |ψ〉 = α|000〉+ β|111〉. This is not
a threefold copy of the logical qubit, which would
correspond to a separable product state—instead,
we here deal with an entangled three-qubit state.

Erroneous flips of the nth qubit (due to Xn) result
in admixture of the other three-qubit basis states.
This can be detected by measurements of the error
syndromes S1 = Z1Z2 and S2 = Z1Z3, and corrected
by applying an operator U following the rules

S1 = 1, S2 = 1 → U = I,
S1 = 1, S2 = −1 → U = X3,
S1 = −1, S2 = 1 → U = X2,
S1 = −1, S2 = −1 → U = X1.

Figure 20 shows how these conditional opera-
tions can be achieved without doing any measure-
ments, but instead utilizing CNOT and Toffoli gates
involving two ancilla qubits. How does this circuit
cope with the continuous set of possible errors?
A single-qubit error moves the quantum state into
a subspace spanned by the computational basis
states with distance 0 and 1 to the logical qubits,
and in this basis is specified by four complex am-
plitudes. In the circuit, these amplitudes simply
determine the probabilities that the control bits
trigger the various CNOT operations. At the end of
the procedure, the complex amplitudes are trans-
ferred to the two ancillary qubits, whose joint state
also resides in a four-dimensional space.

Analogously, errors of the type Z can be cor-
rected using a three-qubit code |0L〉 = |+++〉,
|1L〉 = |−−−〉, where |±〉 =

√
1/2(|0〉 ± |1〉) are the

eigenstates of the X operator. Effectively, the roles
of X and Z are then interchanged.

Once we can cope with individual X and Z er-
rors, schemes can be fused via concatenation to
yield a code that can also correct combined errors.
This naturally leads to the Shor code, which uses
9 qubits to encode one logical qubit according to

|0L〉 =
(|000〉+ |111〉)(|000〉+ |111〉)(|000〉+ |111〉)

2
√

2
,

|1L〉 =
(|000〉 − |111〉)(|000〉 − |111〉)(|000〉 − |111〉)

2
√

2
.

Note how X errors can be detected by comparing
three consecutive qubits, while Z errors are de-
tected by the relative phase of every third qubit;
the latter can be diagnosed using the syndromes
X1X2X3X4X5X6 and X4X5X6X7X8X9.

Since Y = iXZ, the Shor code also allows to
correct Y errors—therefore, it offers protection
against arbitrary single-qubit errors. On the other
hand, considering that here [n, k] = [9, 1], this is
achieved with a rather large overhead. There are
more sophisticated codes that achieve the same
task with less than 9 qubits, the minimum being
5. This still exceeds what was required classically,
and moreover involves many more syndrome di-
agnosis and recovery operations. Considering that
these operations are also prone to errors, it is clear
that quantum error correction is still a challenging
task.

More general schemes—in particular, codes
based on the stabilizer formalism, which utilizes
group theory—allow to cope with complex types of
errors affecting a collection of qubits, and also take
care of errors accumulated by faulty gate opera-
tions. If the initial error rate falls below a cer-
tain threshold, these codes can be scaled up by
adding more and more overhead, thereby allow-
ing (in principle) to achieve arbitrarily good (fault-
tolerant) quantum computation. However, while
present technology has advanced sufficiently to
enable reliable quantum communication, a uni-
versal quantum computer is still far removed from
reality.

B. Practical requirements

This brief concluding section juxtaposes the
main technological requirements for a workable
quantum computer and the key features of some
specific physical implementations.

As is clear from the preceding section, quan-
tum information processing poses serious techni-

22

cal challenges. E.g., fault tolerant computation re-
quires that the error rate of gate operations falls
below a certain threshold, and can only be im-
plemented when the system can be scaled up by
adding more and more components. The various
challenges have been canonized by diVincenzo into
a set of five core requirements, which are known as
the DiVinzenco criteria:

1. Well-defined qubits. This requires to identify
physical systems whose quantum dynamics is
essentially constrained to two quantum levels.
Examples for naturally occurring two-level sys-
tems are the spin of electrons and certain nu-
clei, as well as the polarization of photons. In
many proposed systems, however, the reduction
to two levels is only approximate. Examples are
atoms in ion traps, photons stored in microcav-
ities, the magnetic flux penetrating a supercon-
ducting ring, and electrons confined to (normal
conducting or superconducting) solid-state de-
vices, such as quantum dots. In all these cases,
care has to be taken that the system does not
populate the other available energy levels (i.e.,
one needs to avoid leakage), which can be best
done by making these levels energetically inac-
cessible.

It is of course possible to design quantum com-
putation schemes that are not binary, and there-
fore make use of more than two levels in the
energetically accessible range ∆E of the register
components. However, adding qubits provides
much better scalability. Each additional qubit
multiplies the register state dimension by a fac-
tor of two (resulting in 2N levels), and each qubit
can be addressed individually, which requires
energy resolution ∼ ∆E/N instead of resolution
∼ ∆E/2N for a comparable multi-level system.

By convention, if there is a clear energy sep-
aration between the two levels, the state with
the lower energy is designated |0〉, and the state
with the higher energy is designated |1〉. As dis-
cussed in the context of error correction, the
physical qubits can then be used to encode logi-
cal qubits, which allows to take care of the most
likely sources of errors specific to the chosen im-
plementation.

2. Initialization to a pure state. The quantum regis-
ter must start in a well-defined state. It is suf-
ficient to have a reliable method to prepare at
least one such state, since a universal quantum
computer would be able to transform this into
any other state. Utilities to prepare a larger va-
riety of states further improves the efficiency of
quantum computation.

Using the convention of labeling qubit levels ac-
cording to their energy, the register state |0〉 of-

ten corresponds to the ground state of the sys-
tem. This state can be prepared by allowing the
system to equilibrate (relax) at low temperature.
Other states may be enforced by relaxation in
presence of external fields (such as a magnetic
field for nuclear spins), or dynamically (e.g., by
pumping of atomic transitions).

It is not necessary, however, that the preparation
process is deterministic. E.g., a viable strategy
is to make a hard, complete measurement of the
register, thereby forcing it into a pure state that
is completely determined by the recorded mea-
surement outcomes.

If initialization is not perfect, it can be combined
with error correction schemes to enhance its ac-
curacy. In particular, if the state is not entirely
pure, the entropy can be transferred into ancilla
qubits, so that the register state become puri-
fied. Such procedures also allow to carry out
initialization in multiple steps.

3. Universal set of quantum gates. As discussed
in section III, a universal set of quantum gates
can be obtained using single-qubit rotations on
the Bloch sphere, and at least one type of two-
qubit operations (such as CNOT). Alternative
constructions use a sufficiently large number
of multi-qubit gates. Using facilities to swap
qubits, it is not necessary that each pair of
qubits can be coupled directly; still, the coupling
network needs to be sufficiently interconnected,
and also should be scalable to a large number of
qubits. This is a severe problem for many pro-
posed implementations.

For each implementation, the precision of gate
operations can be increased not only via error
correction, but also using insight into the spe-
cific quantum dynamics of the system. E.g., echo
and refocussing techniques in nuclear magnetic
resonance employ judiciously timed magnetic-
field pulses to average out the effects of spuri-
ous qubit couplings and unwanted single-qubit
terms in the Hamiltonian. This exemplifies the
natural tradeoff between precision and speed of
gate operations, which is a general obstacle in
all implementations.

4. Qubit-specific measurement. Ideally, to deter-
mine the outcome of a computation one should
be able to carry out ideal measurements on each
physical qubit. In practice, a finite degree of
imperfection can be tolerated. This may be be-
cause the computation can be repeated, or be-
cause it can be carried out on many systems in
parallel. An interesting simplification occurs be-
cause algorithms often use quantum parallelism
only during the calculation, but are designed to
deliver a classical bit sequence xn as output.

23

Such results can be amplified using a quantum
fanout operation of the type α|x1〉|00〉+β|x2〉|00〉 →
α|x1x1x1〉 + β|x2x2x2〉, which enhances the mea-
surement fidelity because the desired informa-
tion is now encoded in additional qubits. (Note
how the fanout operation differs from a copy op-
eration prohibited by the no-cloning theorem;
rather, it closely resembles error correction pro-
cedures.)

5. Long coherence times. This statement subsumes
various requirements for the protection of the
quantum register state throughout the computa-
tion. In particular, one needs to preserve the ca-
pacity to use superposition and entanglement as
computational resources. As discussed before,
this capacity is in particular degraded by spu-
rious internal and external interactions. These
effects can be broadly categorized depending on
whether they affect the population probabilities
or interference of the register states (i.e., the
modulus or complex phase of the amplitudes):
Relaxation (on a time scale T1) affects the prob-
abilities, and often is combined with energy loss
or gain (dissipation). Dephasing (on a time scale
T2) affects the phases, and generally reduces the
purity and entanglement of the register state (de-
coherence).

In most systems, T1 � T2, i.e., the operabil-
ity is limited by dephasing. A viable quantum
computer needs to carry out >10000 gate opera-
tions during this time. The polarization of pho-
tons and the spin of electrons in solid-state de-
vices are two types of qubits which possess rea-
sonably long dephasing times (the latter lends a
main incentive to the field of spintronics). On the
other end of the scale, charge (as, e.g., carried
by electrons confined in a quantum dot) couples
strongly to electromagnetic fluctuations, which
discounts this degree of freedom for quantum
computation purposes.

These requirements are supplemented by two
additional criteria for reliable quantum communi-
cation:

6. Convert stationary and flying qubits. Station-

ary qubits reside in registers, while flying qubits
propagate along quantum transmission lines.
Photons make ideal flying qubits, while nuclei
and atoms typically serve as stationary qubits.
In this respect, electrons in solid state devices
are particularly flexible because they can move
through conducting regions, but can also be
confined electrostatically.

7. Transmit flying qubits between distant locations.
This can be achieved with high fidelity for pho-
tons, but is far more challenging for electrons.
In spintronics, e.g., the electronic spin can be
flipped by scattering off magnetic impurities in
the transmission line.

At present, none of the various physical candi-
date platforms score well on all of the core require-
ments. The key challenge is to overcome the nat-
ural trade-off between easy access of qubits (ini-
tialization, control, readout), a high degree of iso-
lation (coherence), and scalability. On the other
hand, this trade-off can also be exploited to bal-
ance strengths in certain areas (e.g., a long co-
herence time) against weaknesses in other areas
(e.g., imprecise gates, whose errors can then be
corrected by running a more sophisticated, time-
consuming error correction scheme). That said,
any viable quantum computer is likely to be a hy-
brid device which combines the specific strengths
of the various physical platforms.

VII. FURTHER READING

[1] M. A. Nielsen and I. L. Chuang, Quantum
Computation and Quantum Information (Cam-
bridge University Press, 2000).

[2] J. Stolze and D. Suter, Quantum Computing—
A Short Course from Theory to Experiment,
2nd edition (Wiley VCH, 2008).

[3] J. Preskill, Lecture notes, available at
http://www.theory.caltech.edu/
∼preskill/ph219/index.html#lecture

